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ABSTRACT 
The government organizations in Africa, Asia and South America are adopting OSS 
solutions because of its low cost and availability of cheap skilled programmers in their 
countries to customize the software to their needs. In a study conducted to track the usage 
of OSS, it was found that OSS is extensively promoted in countries like India, China and 
Taiwan followed by South Korea, Malaysia, Singapore and Thailand in Asia. In South 
America, Mexico, Brazil and Argentina are encouraging the use of OSS in all sectors of 
the government whereas in Africa, South Africa is extensively reaping the benefits of OSS 
followed by Kenya, Ghana and Nigeria (Noronha, 2003).Many developing countries have 
a large pool of easily available skilled personnel who can modify the source codes of an 
OSS to meet the specific needs of the government organizations. The various types of OSS 
prove to be extremely useful in promoting e-government. In this paper our objective is to 
propose a methodology which can be used to analyze the existing quality of the OSS as 
well as to predict the quality of the OSS after customization. 

 
Keywords: OSS/FS - Opens Source Software/Free Software, FLOSS - Free/Libre/Open Source, Software, 
FOSS - Free Open Source Software, GRAM - Generally Recognized as Mature, GRAS - Generally 
Recognized as Safe 
 
1. Introduction 
Open Source Software / Free Software (OSS/FS) has risen to great prominence. Briefly, OSS/FS programs 
are programs whose licenses give users the freedom to run the program for any purpose, to study and 
modify the program, and to redistribute copies of either the original or modified program (without having 
to pay royalties to previous developers). Many quantitative studies have shown that, in many cases, using 
OSS/FS programs is a reasonable or even superior approach compared to their proprietary competition. 
OSS/FS programs are also called FLOSS, FOSS, and libre programs. There are number of Quality 
Standards are available for Software Quality assessment like ISO-9126, IEEE – 1061 etc. It’s the choice of 
Quality expert to use any methodology to evaluate the quality of software but we recommend that if the 
evaluation process is using quantitative approach for each and every quality attributes, it will be more 
appreciable. In this paper we are proposing one small template to evaluate the quality of software using a 
weighted quantity approach. It’s not necessary that Quality Assurance people should use only this 
approach, but they can use the other approach also in which they are more confident. Our objective is to 
select the OSS based on the existing quality of the software. Since the software may not be developed 

                                                 
1 Department of MCA, M.S. Ramaiah Institute of Technology, MSR Nagar, Bangalore-560054 (Karnataka) 
* Corresponding Author: (E-mail: chethu4u@gmail.com, Telephone: +91 9945178821) 
 



Chetan Venkatesh et al. / Quality Prediction of Open Source Software for –e-Governance Project 

143 

specifically for some particular Govt. Department or organization, so definitely it will require some 
customization as per the requirement. This customization may change the existing quality of software, so 
before start doing the changing in existing OSS, our aim is to predict that after customization of the 
software whether the quality after changes in software will improve or degrade. Depending on the analysis 
if we see that the quality of the software will be equal to or more than the existing quality  of the software, 
we should adopt the existing OSS software for customization instead of going for the proprietary or new 
software development. 
 
In the following section we are defining the attributes which we will use to analyze the quality of existing 
OSS. Based on which we adopt the OSS for customization. 
 
2. Identify Candidates 
The first step is to find out what our options are. We should use a combination of techniques to make sure 
we don't miss something important. An obvious way is to ask friends and co-workers, particularly if they 
also need or have used such a program. If they have experience with it, ask for their critique; this will be 
useful as input for the next step, obtaining reviews. Look at lists of OSS/FS programs, including any list of 
"generally recognized as mature" (GRAM) or "generally recognized as safe" (GRAS) OSS/FS programs. 
After all, some OSS/FS products are so well-known that it would a terrible mistake to not consider them. 
For example, anyone who needed a web server and failed to at least consider Apache would be making a 
terrible mistake; Apache is the market leader and is extremely capable.  
 
3. Read Existing Reviews 
After identifying the options, read existing evaluations about the alternatives. It's far more efficient to first 
learn about a program's strengths and weaknesses from a few reviews than to try to discern that information 
just from project websites. The simplest way to find these reviews is to use a search engine (like Google) 
and search for an article containing the names of all the candidates we have identified. Also, search for web 
sites that try to cover that market or functional area, and see if they've published reviews. In the process, we 
may even identify plausible candidates we missed earlier. 
  
An important though indirect "review" of a product is the product's popularity, also known as market share. 
Generally we should always try to include the most popular products in any evaluation. Products with large 
market share are likely to be sufficient for many needs, are often easier to support and interoperate, and so 
on. OSS/FS projects are easier to sustain once they have many users; many developers are originally users, 
so if a small percentage of users become developers, having more users often translates into having more 
developers. Also, developers do not want their work wasted, so they will want to work with projects 
perceived to be successful. Conversely, a product rapidly losing market share has a greater risk, because 
presumably people are leaving it for a reason (be sure to consider whatever its replacement is!).  
 
An interesting indirect measure of a product is whether or not it's included in "picky" Linux distributions. 
Some distributions, such as Red Hat Linux, intentionally try to keep the number of components low to 
reduce the number of CD-ROMs in their distribution, and evaluate products first to see which ones to 
include. Thus, if the product is included, it's likely to be one of the best OSS/FS products available, because 
its inclusion reflects an evaluation by someone else.  
 
4. Briefly Compare the Leading Programs' Attributes to Your Needs 
Once we have read other reviews and identified the leading OSS/FS contenders, we can begin to briefly 
examine them to see which best meet our needs. The goal is to prepare the list of realistic alternatives to a 
few "most likely" candidates. Note that we need to do this after reading a few reviews, because the reviews 
may have identified some important attributes we might have forgotten or not realized were important. This 
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doesn't need to be a lengthy process; we can often quickly eliminate all but a few candidates. The first step 
is to find the OSS/FS project's web site. Practically every OSS/FS project has a project web site; by this 
point we should have addresses of those web sites, but if not, a search engine should easily find them. An 
OSS/FS project's web site doesn't just provide a copy of its OSS/FS program; it also provides a wealth of 
information that we can use to evaluate the program it's created. For example, project web sites typically 
host a brief description of the project, a Frequently Asked Questions (FAQ) list, project documentation, 
web links to related/competing projects, mailing lists for developers and users to discuss the program or 
project, and so on 
 
Next, we can evaluate the project and its program on a number of important attributes. Important attributes 
include functionality, reliability, usability, efficiency, maintenance, and Portability. The benefits, 
drawbacks, and risks of using a program can be determined from examining these attributes. The attributes 
are the same as with proprietary software, of course, but the way we should evaluate them with OSS/FS is 
often different. In particular, because the project and code is completely exposed to the world, we can (and 
should!) take advantage of this information during evaluation. Each of these will be discussed below; if 
there are other attributes that are important to us, by all means examine those too.  
 
4.1 Functionality 
One of the most important questions is also the simplest: Does the program do what we want it to do? It's 
often useful to write down at least a brief list of the functions that are important to us. Many project web 
sites provide a brief, easily-accessible description of the current capabilities of their program; we will have 
to look at this first. For more information, we can usually read the project's Frequently Asked Questions 
(FAQ) list and the program documentation. The specific functions that we need obviously depend on the 
kind of program and our specific needs. However, there are also some general functional issues that apply 
to all programs. In particular, we should consider how well it integrates and is compatible with existing 
components we have. If there are relevant standards, does the program support them? If we exchange data 
with others using them, how well does it do so? For example, MOXIE: Microsoft Office - Linux 
Interoperability Experiment downloaded a set of representative files in Microsoft Office format, and then 
compared how well different programs handled them.  
 
We should also consider what hardware, operating systems, and related programs it requires - will they be 
acceptable for us (do we have them or are we willing to get them)? The issue of operating system 
requirements is particularly important for organizations that only have Microsoft Windows systems. This is 
because many OSS/FS programs are only available for GNU/Linux or Unix. In some cases the program can 
be quickly ported to Windows, but porting is often time-consuming and the products often don't work as 
well -- typically because Windows does not support some important Unix/Linux features (such as the low-
level "fork" capability) or because Windows works significantly differently (e.g., its graphical user 
interface). Sometimes, particularly with server applications, it may be much better to get an inexpensive 
computer and install GNU/Linux, FreeBSD, or OpenBSD to use an OSS/FS program than trying to port it 
to Windows. Today's computers and OSS/FS operating systems are so inexpensive that it's often cheaper to 
buy special-purpose computers for a task than to try to change the application to run on a different 
operating system. A positive side-effect is that using a special-purpose computer usually improves security 
significantly, because we can remove all services from the computer that aren't necessary for its specific 
task. We can often control server applications using web browsers or remote terminals, so in most cases we 
can have different operating systems for the desktop and the server application.  
 
4.2 Reliability 
Reliability measures how often the program works and produces the appropriate answers; a very similar 
measure is availability. Reliability is difficult to measure, and strongly depends on how the program is 
used. Problem reports are not necessarily a sign of poor reliability - people often complain about highly 
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reliable programs, because their high reliability often leads both customers and engineers to extremely high 
expectations. Indeed, the best way to measure reliability is to try it on a "real" work load, as discussed later.  
Still, information is often available that may help gauge a program's likely reliability.  
 
In particular, a mature program is far more likely to be reliable. The project's web site itself is likely to try 
to describe the program's maturity; if the project declares that the program is not ready for end-users, 
they're usually right. To be fair, some developers are perfectionists and are never willing to admit that a 
program really is mature. Another very good sign is the presence of a test suite that is used at least before 
official releases, and preferably constantly (e.g., daily or with each check-in). The test suite should be 
included with the source and/or binary release of the program; if they aren't, there's the risk that they aren't 
getting maintained as well as they need to be. Test suites can help prevent common problems from re-
occurring, and can reduce the risk of a change causing an undesirable side-effect. For this reason, test suites 
are especially valuable if we decide that we want to make changes to the software. But even when we aren't 
making changes to the software, the presence of a reasonable test suite suggests that the program is more 
reliable. Take a look at the test suite, to see how well it covers the program's functionality.  
 
4.3 Usability 
Usability measures the quality of the human-machine interface for its intended user. A highly useable 
program is easier to learn and easier to use. Some programs (typically computer libraries) are intended only 
for use by other programs and not directly by users at all. In that case, it will typically have an application 
programmer interface (API) and we should measure how easily programmers can use it. Generally, an API 
should make the simple things simple, and the hard things possible. One way to get a measure of this is to 
look for sample fragments of code that use the API, to see how easy it is to use.  
 
For applications intended for direct use by users, there are basically two kinds of human-machine interfaces 
used by most of today's programs: a command-line interface and a graphical user interface (GUI). These 
kinds are not mutually exclusive; many programs have both. Command line interfaces are easier to control 
using programs (e.g., using scripts), so many programmers and system administrators prefer applications 
that have a command line interface available. So, if the application will need to be controlled by programs 
sometimes, it is a significant advantage if it has a command line interface. There are alternative user 
interfaces for special purposes. For example, there are programs (typically older programs) which use 
character screens to create a text-based GUI-like interface (these are sometimes called "curses" programs, 
named after a library often used to build such programs). However, for most applications intended for 
direct use by humans, today's users want a GUI; GUIs are much easier to use for most users. In most 
circumstances, it will be the program's GUI that you'll be evaluating.  
 
It's important to note that many OSS/FS programs are intentionally designed into at least two parts: an 
"engine" that does the work, and a GUI that lets users control the engine through a familiar point and click 
interface. This division into two parts is considered an excellent design approach; it generally improves 
reliability, and generally makes it easier to enhance one part. Sometimes these parts are even divided into 
separate projects: The "engine" creators may provide a simple command line interface, but most users are 
supposed to use one of the available GUIs available from another project. Thus, it can be misleading if you 
are looking at an OSS/FS project that only creates the engine - be sure to include the project that manages 
the GUI, if that happens to be a separate sister project.  
 
In many cases an OSS/FS user interface is implemented using a web browser. This actually has a number 
of advantages: usually the user can use nearly any operating system or web browser, users don't need to 
spend time installing the application, and users will already be familiar with how their web browser works 
(simplifying training). However, web interfaces can be good or bad, so it's still necessary to evaluate the 
interface's usability.  
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4.4 Efficiency  
Have functions been optimized for speed? Have repeatedly used blocks of code been formed into sub-
routines? Checked for any memory leak, overflow? The amount of computing resources and code required 
by a program to perform its function.Performance bottlenecks can be identified, and the need for 
performance tuning can then usually be localized in a small number of performance-critical components. 
Components can be internally optimized to improve performance, without affecting their specification; 
components can be moved between platforms to improve performance, without affecting the functionality 
or usability of the application. ISO/IEC 9126 identifies efficiency as “A set of attributes that bear on the 
relationship between the software's performance and the amount of resources used under stated conditions”. 
In fact the term efficiency refers to the time and resource behavior of the software. There are, of course, 
some benchmarks from various popular magazines or some web sites, showing benchmark data about the 
performance, but sometimes the rationale of the benchmarking test is in most times, quite subjective.  
 
4.5 Maintainability  
The Maintainability of a system is its aptitude to undergo repair and evolution. The modular structure of a 
component based solution allows individual components to be replaced easily. Maintainability of a 
software is highly dependent on the process used to develop it. Assessing the quality of the software 
maintenance process is done using a software maintenance maturity model. Assessing the maintainability 
of the software product is done by assessing four different perspectives: its Analyzability, Changeability, 
Stability and Testability.Maintainability has to do with the easiness of code modification. 
 
According to the ISO 9126 (International Organization for Standardization, 1991) model, maintainability is 
“A set of attributes that bear on the effort needed to make specified modifications (which may include 
corrections, improvements, or adoptions of software to environmental changes and changes in the 
requirements 22 and functional specifications)”. Maintainability of F/OSS projects is a factor that was one 
of the first to be investigated by the F/OSS literature. This was done mainly because F/OSS development 
emphasizes on the maintainability of the software released. Making software source code available over the 
Internet allows developers from all over the world to contribute code, adding new functionality (parallel 
development) or improving present one and submitting bug fixes to the present release (parallel 
debugging). A part of these contributions are incorporated into the next release and the loop of release, 
code submission/bug fixing, incorporation of the submitted code into the current and new release is 
continued. This circular manner of F/OSS development implies essentially a series of frequent maintenance 
efforts for debugging existing functionality and adding new one to the system. These two forms of 
maintenance are known as corrective and perfective maintenance respectively. In another study, the 
maintainability of the source of an open source product is compared directly with a closed source one 
(Samoladas et al., 2003). 
 
In that study, the Maintainability Index (MI) proposed by Carnegie Mellon's SEI (Software Engineering 
Institute, 2002) was used in order to gain insight into the evolution of the maintainability of five F/OSS 
systems. The reason behind the use of 24 the MI stem from concurrence by both the authors and 
McConnell’s that F/OSS should conform to such standards and metrics. The results of the study show that 
F/OSS maintainability is no worse than that of closed source software. In direct comparison, F/OSS was 
found to be better than closed source software 
 
4.6 Portability 
Does the program depend upon system or library routines unique to a particular installation? Have 
machine-dependent statements been flagged and commented? Has dependency on internal bit 
representation of alphanumeric or special characters been avoided? The effort required to transfer the 
program from one hardware/software system environment to another. The specification of a component is 
platform-independent. So a component can be quickly rebuilt for a new platform, without affecting any 
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other component. For example Java projects may need to be tested on different operating systems and 
application servers. Web applications may need to be tested in different browsers. Portability in software is 
an attribute that has to do mainly with platforms and machine dependence. It expresses the ease of 
transferring an existing system, running on a specific machine, to another machine with a different 
configuration. ISO/IEC 9126 (International Organization for Standardization, 1991) describes portability as 
“A set of attributes that bear on the ability of software to be transferred from one environment to another 
(including the organizational, hardware, or software environment)”. From its early days, portability has 
been a central issue in F/OSS development. Various F/OSS systems have as first priority the ability of their 
software to be used on platforms with different architectures. Here, we have to stress one important fact, 
which originates from the nature of F/OSS, and helps portability, namely the availability of the source code 
of the destination software. If the source code is available, then it is possible for the potential developer to 
port an existing F/OSS application to a different platform than the one it was originally designed for. 
Perhaps the most famous F/OSS, the Linux kernel, has been ported to various CPU architectures other than 
its original one, the x86. In the end, evaluating usability requires hands-on testing.  
 
5. Proposed Evaluation Sheet and Evaluation Methodology 
Now after going through all the factors in detail this is the time to quantify these all analysis in a metrics 
form. We are proposing an analysis metrics to quantify this entire evaluation process. 

 
Table 1: Evaluation Template 

 Weighting  
Factor 
between 1 
to 5 

Maximum 
Score = 
(Weighting 
Factor) x 10 

Evaluated 
Score out 
of 10 

Weighted Score = 
(Weighting 
Factor) x 
(Evaluated Score 
out of 10 ) 

Software Quality Attributes 
I Functionality     

II Reliability     
III Usability     
IV Efficiency     
V Maintainability      
VI Portability     
TOTAL     

 
5.1 Evaluation Methodology 
1. Calculation for Software Quality Attributes 

(a) Total Weighting Factor of Software Quality Attributes i.e. WF1 = Sum of weighting factor of all 
six attributes in Software Quality Attribute. 

(b) Total Evaluated Score of Software Quality Attributes i.e. ES1 = Sum of evaluated score of all six  
attributes in Software Quality Attribute ( each  attribute score will be measured out of 10) 

(c) Total Weighted Score of Software Quality Attributes i.e. WS1 = Sum of weighted score of all six 
attributes in Software Quality Attribute. 

 

2. Total Weighting Factor i.e. TWF = ∑
=

6

1i

WFi   

3. Total Weighted Score i.e. TWS =  ∑
=

6

1i

WSi  
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Now we have to calculate the percentage of each Weighting Factor with respect to Total Weighting Factor 
(TWF) i.e.  

        PWFi =
TWF

WFi
100×   for 61 ≤≤ i  

Similarly we have to calculate the percentage of each Weighted Score with respect to Total Weighted Score 
(TWS) i.e.  

PWSi = 
TWS

WSi
100×     for 61 ≤≤ i  

 
We recommend that Total Weighted Score (TWS) should be at least 70% of Total Max Score (TMS). But 
only this condition is not sufficient to adopt the software. If you analyze the evaluation process you can see 
that we have divided the evaluation in six major factors i.e. Functionality, Reliability, Usability, Efficiency, 
Maintainability, Portability. Total Weighted Score (TWS) is sum of weighted score of all the six major 
factors mentioned earlier. Similarly Total Max Score (TMS) is also a sum of Max Score of all the six major 
factors. Since in entire evaluation process Weighting Factor is playing a key role so it’s important to 
consider that the major factor (Functionality, Reliability, Usability, Efficiency, Maintainability,    
Portability.) whose weighting factor is more should contribute more in a Total Weighted Score. Because 
sometime it may happen that few major factor is less weighted but they are contributing very high score in 
Total Weighted Score and the other major factor who’s weighting factor is very high are contributing very 
less in Total Weighted Score. But finally the Total Weighted Score is satisfying the recommended criteria 
(at least of 70% of Total Max Score (TMS)).So In this case only considering the Total Weighted Score will 
not give a feasible solution. 
 
So to overcome with this problem we are considering the following condition. 
 

 ER = ∑
=

6

1i
if     where   =if

⎪
⎩

⎪
⎨

⎧

>
=
<

)(3

)(2

)(1

PWFiPWSiif

PWFiPWSiif

PWFiPWSiif

       for 61 ≤≤ i  

 
Here ER is a final Evaluated Result and we suggest that ER value must be equal to or greater than 10.Using 
the given templates we can evaluate the quality of both proprietary as well as OSS. Finally ER value will 
give some effective result which can be used for taking the decision for considering the proprietary or OSS 
for the better quality of project.  
 
Since the OSS whatever we analyzed using the above described methodology may not be developed 
specifically for some particular Govt. Department or organization, so definitely it will require some 
customization as per the requirement. This customization may change the existing quality of software, so 
before start doing the changing in existing OSS, our aim is to predict that after customization of the 
software whether the quality after changes in software will improve or degrade. Depending on the analysis 
if we see that the quality of the software will be equal to or more than the existing quality  of the software, 
we should adopt the existing OSS software for customization instead of going for the proprietary or new 
software development. So in the next section we are proposing a method for the early prediction of OSS 
quality i.e. the prediction of the OSS quality after customization.   
 



Chetan Venkatesh et al. / Quality Prediction of Open Source Software for –e-Governance Project 

149 

6. A Software Quality Prediction Model Based on FALCON 
In this section, we propose a software quality prediction model based on FALCON, a specific type of FNN. 
There exist many factors that have impact on the quality of target software product, therefore, the 
relationship between these factors and software quality attributes is a complex, nonlinear and multivariate 
one. Naturally, FALCON could be a good candidate for software quality prediction modeling. Moreover, 
due to the fusion of ANN and FL, FALCON possesses the advantage of natural language description of FL 
as well as the learning properties of ANN. This motivates our proposition of a software quality prediction 
model using FALCON. The ISO 9126, IEEE 106 standard for information technology and proposed 
method provides a framework for the evaluation of software quality, which defines six product quality 
attributes, i.e., functionality, reliability, usability, efficiency, maintainability and portability. Nevertheless, 
when conducting software quality prediction, one should choose those quality attributes of interest and of 
major importance as the output variables of the model, rather than to stringently use all the six quality 
attributes as output variables, since the increase of the number of output variables will considerably 
increase the complexity of the model as well as the time for model training.  In our methodology, all output 
variables of the software quality prediction model are defined as variables which can only take values in 
[1,2,3] for which a value 3 indicates a higher value of quality attribute (e.g., higher portability) and a value 
1 indicates a lower value of quality attribute (e.g., lower portability). The input variables of the software 
quality prediction model are factors which are considered to have impact on the target software’s quality 
attributes, including software product metrics, development process characteristics, operation conditions, 
etc. From a practical point of view, only those factors which, for a specific software project, have certain 
available measurements and have significant impact on quality attributes should be used as input variables. 
Figure 1 [13] illustrates a software quality prediction model constructed based on FALCON. In this 
example, we choose three levels (Low, Medium and High) for each input and output variable. As there are 
three input nodes at layer 1 and each of them has three term nodes, there is 3×3×3, namely 27 nodes in 
layer 3, each of which represents a possible fuzzy logic rule. The term nodes in layer 2 and layer 4 are 
realized by Gaussian fuzzy membership functions. The links between layer 3 and layer 4 are fully 
connected before training. Each link has a weight to represent the strength of the existence of the 
corresponding rule consequence. For each of the input variables, its value to be used in this model is 
normalized to [-1, 1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 2: A Software Quality Prediction Model based on FALCON (before training) 
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In summary, the proposed FALCON-based model has some features that are quite favorable in software 
quality prediction: 

• It is a multi-input-multi-output model, thus it can describe the complex relationship between target 
software’s quality attributes and all those affecting factors. On the one hand, the multi-input 
feature makes the model able to take into account most factors which have impact on quality 
attributes; on the other hand, the multi-output feature makes the model able to predict several 
quality attributes of interest. 

• In a software development project, the information that can be obtained includes objective data  
and knowledge/experiences from experts or from similar projects (which may be in form of a rule 
such as “if the number of classes is too big, then the reliability and maintainability of the target 
software will both be low”). Therefore, a realistic software quality prediction model should have 
the capability of handling both types of information, which is especially crucial to early software 
quality prediction. The FALCON-based model, due to its nature of fusion of artificial neural 
networks and fuzzy logic, has the capability of dealing with both objective data and people’s 
knowledge/experiences. For knowledge given in form of rules, it can be used by the model in the 
training phase by directly entering the model from the second layer. 

• The model has much flexibility. In the early phases of software development process, there is not 
much 

 
7. Concluding Remarks  
Many developing countries have a large pool of easily available skilled personnel who can modify the 
source codes of an OSS to meet the specific needs of the government organizations. The various types of 
OSS like compilers, firewalls, networking software, operating systems etc. prove to be extremely useful in 
promoting e-government. In this case if we can predict the quality of OSS before customization, it will help 
the organization to take a clear decision about the Proprietary Software and OSS.  
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